Memiliki 2 Buah Rusuk
Ciri kedua dari bangun ruang tabung adalah memiliki 2 buah rusuk yang letaknya berada di bagian alas dan tutup tabung dan berupa lengkungan garis lingkaran. Dengan adanya dua buah rusuk ini, kita jadi tahu bahwa garis lengkungan ini akan memengaruhi ukuran jari-jari bangun ruang tabung. Selain itu, tanpa adanya dua buah rusuk, kita tidak akan tahu letak lingkaran berada di mana karena tidak ada garis lengkungan.
Ciri tabung yang satu ini bisa dibilang sebagai pemberitahu letak dari lingkaran itu berada. Dua buah rusuk menjadi penting karena lingkaran merupakan salah satu bangun datar yang dapat membentuk bangun ruang tabung dan lingkaran sudah menjadi bagian dari jaring-jaring tabung.
Adanya Jari-Jari Tabung
Sifat pertama dari tabung adalah adanya jari-jari yang terletak pada bagian atas dan bagian alas tabung. Jari-jari pada tabung ini berfungsi untuk menghitung keliling tabung itu sendiri. Setiap bangun ruang tabung pasti memiliki bangun lingkaran yang ukurannya sama pada bagian alas tabung dan tutup tabung, sehingga kita hanya perlu menghitung satu lingkaran tabung (alas atau tutup) supaya bisa menghitung keliling tabung.
Ternyata, jari-jari tabung bukan hanya berfungsi untuk menghitung keliling tabung saja, tetapi juga berfungsi untuk menghitung volume tabung. Maka dari itu, dapat dikatakan bahwa rumus menghitung keliling dan volume tabung sangat berpengaruh terhadap ukuran jari-jari pada tabung. Jadi, sebelum menghitung keliling dan volume tabung, sebaiknya dicari terlebih dahulu jari-jari tabung.
Rumus Keliling Lingkaran
Sebelum cas-cis-cus langsung menghitung rumus, ketahui dulu mengenai apa itu keliling.
Keliling atau yang disimbolkan dengan huruf “K” adalah panjang seluruh garis batas lingkaran.
Rumus untuk menghitung keliling lingkaran yaitu sebagai berikut:
Jika sebuah lingkaran diketahui jari-jarinya, pakailah rumus K=2.π.r. Namun, jika sebuah lingkaran diketahui diameternya, pakailah rumus K=π.d.
Selanjutnya, ada juga unsur lingkaran yang bernama “luas” (L), tidak lain yakni jumlah daerah yang dilingkupi oleh lingkaran.
Rumus untuk menghitung luas lingkaran adalah:
Skollamate, ketika pertama kali mendengar lingkaran, apa yang ada di pikiranmu? Hmm… Ban sepeda, kancing, jam dinding, atau pizza? Betul! Pasti kamu bisa menyebutkan banyak benda berbentuk lingkaran.
Tahukah kamu kalau benda yang kamu sebutkan tadi adalah gerbang dari sebuah konsep ilmu Matematika?
Ya! Tanpa kamu sadari, dulu kamu mengenal lingkaran hanya sebagai jenis “bentuk”. Tapi sekarang, kamu akan mengenal lingkaran lebih jauh lagi sebagai salah satu dari konsep Matematika, yaitu “bangun datar”. Menarik, kan?
Nggak sebatas bentuknya melingkar, kamu akan lebih tau serba-serbi tentang lingkaran. Kamu juga bakal ketemu rumus lingkaran yang nggak cuma ada satu. Penasaran mau pelajarin lebih lanjut? Yuk, baca di artikel ini!
Luas Permukaan Tabung
Untuk menghitung luas permukaan tabung dapat dihitung dengan cara menjumlahkan luas ketiga sisinya.
Luas permukaan tabung = Luas alas + Luas tutup + Luas selimut tabung
Luas selimut tabung = 2 x 𝜋 x r x t
Algoritma Menghitung Luas Permukaan, Keliling dan Volume Kubus:
Memiliki 2 Buah Rusuk
Ciri kedua dari bangun ruang tabung adalah memiliki 2 buah rusuk yang letaknya berada di bagian alas dan tutup tabung dan berupa lengkungan garis lingkaran. Dengan adanya dua buah rusuk ini, kita jadi tahu bahwa garis lengkungan ini akan memengaruhi ukuran jari-jari bangun ruang tabung. Selain itu, tanpa adanya dua buah rusuk, kita tidak akan tahu letak lingkaran berada di mana karena tidak ada garis lengkungan.
Ciri tabung yang satu ini bisa dibilang sebagai pemberitahu letak dari lingkaran itu berada. Dua buah rusuk menjadi penting karena lingkaran merupakan salah satu bangun datar yang dapat membentuk bangun ruang tabung dan lingkaran sudah menjadi bagian dari jaring-jaring tabung.
Rumus Keliling Lingkaran
Keliling lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari atau radius lingkaran (r) atau diameter lingkaran (d). Rumus keliling lingkaran adalah K = 2πr atau K = πd. K merupakan lambang keliling lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.
Jika diketahui diameter, maka rumus keliling lingkaran adalah K = πd
Jika diketahui jari-jari, maka rumus keliling lingkaran adalah K = 2πr
Keliling Alas Atau Tutup Tabung
Untuk menghitung alas atau tutup tabung dapat dihitung menggunakan rumus sebagai berikut:
Bangun ruang tabung atau silinder memiliki beberapa unsur yang terdiri dari, sisi tabung, selimut tabung, jari-jari tabung, diameter tabung, dan tinggi tabung.
Sisi Alas dan Sisi Tutup Tabung
Unsur kesatu dari bangun ruang tabung adalah adanya sisi alas dan sisi tutup tabung. Sisi alas dan sisi tutup tabung terbentuk dari dua buah lingkaran yang di mana sisi alas tabung terletak pada bagian bawah tabung dan sisi tutup tabung terletak pada bagian atas tabung. Dengan kata lain, sisi alas tabung berfungsi agar tabung tidak jatuh dan sisi tutup tabung berfungsi untuk menutupi bagian tabung. Adapun pembentuk dari lingkaran, yaitu pusat lingkaran dan jari-jari lingkaran.
Unsur kedua dari tabung adalah selimut tabung. Selimut tabung adalah sisi lengkung yang letaknya berada di bagian tengah tabung. Dengan kata lain, selimut tabung terletak di antara sisi alas dan susu tutup tabung. Sementara itu, fungsi dari selimut tabung adalah untuk menghubungkan sisi alas dengan sisi tutup tabung.
Unsur bangun ruang tabung yang ketiga adalah jari-jari tabung. Jari-jari tabung yang ada di tabung merupakan jari-jari yang ada di dalam lingkaran. Lingkaran pada bangun ruang tabung terletak pada bagian alas tabung dan bagian tutup tabung. Jari-jari tabung adalah suatu jarak antara rusuk tabung dengan titik pusat lingkaran tabung.
Unsur tabung yang kelima adalah diameter tabung. Diameter tabung adalah panjang dari jari-jari tabung yang dikalikan dua. Oleh sebab itu, dapat dikatakan bahwa diameter tabung merupakan jarak dari rusuk tabuk yang melalui titik pusat lingkaran tabung. Diameter tabung letaknya sama dengan dengan jari-jari tabung, yaitu di sisi alas dan di sisi tutup tabung. Pada dasarnya, diameter tabung jarang sekali digunakan karena dalam rumus-rumus tabung yang lebih sering digunakan adalah jari-jari tabung.
Unsur tabung yang kelima adalah tinggi tabung. Tinggi tabung adalah suatu jarak antara titik pusat lingkaran yang berada di sisi tutup tabung dengan titik pusat lingkaran yang berada di sisi alas tabung.
Bangun ruang tabung memiliki beberapa sifat, yaitu: